

C.U.SHAH UNIVERSITY – Wadhwan City

FACULTY OF: -Technology and Engineering (Diploma Engineering) DEPARTMENT OF: - Civil Engineering SEMESTER: -___V CODE: -2TE05DCS1 NAME -Design of Concrete Structure

Teaching & Evaluation Scheme:-

Ī	Subject Code	Subject Name	Teaching Scheme (Hours)					Evaluation Scheme								
			Th	Tu	Pr	Total	Credits	Theory				Practical Internal		l (Marks) University		-
								Sessional Exam		University Exam		Pr	тw	Pr	Tw	Total
								Marks	Hours	Marks	Hours				1	
		Design of Concrete Structure	04	02	00	06	05	30	1.5	70	03		20	30		150

Objectives: To equip the students with the Limit state design method, Limit state of collapse and serviceability of Design of Concrete Structure with emphasis on analysis of Beam and Lintel. To enable the students to visualize structural dynamics problems with a proper blend of structural Analysis and vibration theory.

Pre-requisite: Basic knowledge of Axially Loaded Short Column,, Isolated Column Footing& Slab and Staircase.

Course Outlines:-

Sr. No.	Course Contents					
1	Introduction to is – 456:2000					
	Importance of use of steel as reinforcement, Limit state design method ,Limit state of collapse					
	and serviceability, Characteristic strength of concrete and grades of concrete, Characteristic					
	strength of steel and grades of steel, Partial safety factors for material, Types of loads, load					
	combinations and partial safety factors for loads. Limit state of collapse - FLEXURE and its					
	assumptions, Limit state of collapse – SHEAR and its assumptions.					
2	General is Requirements for Design According to is - 456:2000:- Exposure conditions and	09				
	minimum cover to the reinforcement, spacing of bars					
	in a layer and different layers, Define effective depth, Effective span for different support					
	conditions ,Basic factors for control of deflection and different modification factors,					
	Requirements of minimum and maximum flexural reinforcement in beam, Short column,					
	minimum eccentricity and requirements of longitudinal and lateral reinforcement in column,					
	Bond stress: bd and development length of bar					
3	Beam and Lintel: Classification of rectangular beam according to reinforcement: balanced	10				
	section, under reinforced section, over reinforced section, singly reinforced section and doubly					
	reinforced section, Singly reinforced rectangular beam: (Annexure-G, IS – 456:2000). Depth of					
	neutral axis: Xumax, X. Limiting percentage of steel: ptlim. Moment of resistance factor: Q.					
	Use of SP-16 tables for d Xumax, ptlim and Q. Limiting moment of resistance: Mulim.					
	Moment of resistance: Mu. Design of tension reinforcement: AST for given Mu, its check					
	Against requirement of reinforcement. Use of SP-16 tables for AST, Doubly reinforced					
	rectangular beam: (Annexure-G, IS – 456:2000). Need of doubly reinforced section. Moment					
	of resistance: Mu. Design of tension reinforcement: AST and compression reinforcement: ASC					
	for given Mu, its check against requirement of reinforcement.					

4	Slab and Staircase: Classification of slab panel according to span ratio: One way slab and Two way slab, Live Load on slab according to IS – 875:1987 (Part-II) Effective span for One way simply supported slab, Design of One way simply supported slab with checks for flexure, shear, bond, deflection and cracking, Shear force and bending moment coefficient for One way continuous slab, Effective span for One way continuous slab, Design of One way continuous slab, Design of One way continuous slab, Design of One way continuous slab, Effective span for One way continuous slab, Design of One way continuous slab with checks for flexure, shear, bond, deflection and cracking,	12
5	Provisions for Two way slab (Annexure-D, IS – 456:2000) Axially Loaded Short Column: Effective length of column, Check for eccentricity,	10
5	Factored/Design load capacity: Pu for different types of cross-section for given percentage of ASC, Increase in factored load capacity for helically reinforced circular column, Design of longitudinal and lateral reinforcement for axially loaded short Column	10
6	Isolated Column Footing: Bearing capacity of soil, Types of footing, Critical sections for flexure and shear, Bearing stress at junction of column and footing, provision of dowel bars, Design of rectangular pad footing with checks for flexure, One way and Two way shear, bearing, bond and cracking, Design of rectangular slopped footing with checks for flexure, One way and Two way shear, bearing, bond and cracking	10

Term work: Shall consist of at least 25 problems based on the Course under Design of Concrete Structure.

Learning outcomes: Ability to analyse Limit state design method ,Limit state of collapse and serviceability. Knowledge of Beam and Lintel. Ability to solve Design of longitudinal and lateral reinforcement for axially loaded short Column.

Laboratory Experiences:

- $1. \quad IS-456{:}2000, \, IS-875{:}1987, \, IS-13920{-}1993$

- IS = 450.2000, IS = 875.1987, IS = 13920-1995
 SP-16: Design Aids to IS = 456
 SP-34: Reinforcement detailing
 Limit state design of RC structures (Vol.-I) by H J Shah
 Limit state design of RC structures by A K Jain
 Limit state design of RC structures by B C Punmia
 Limit state design of RC structures by P C Verghese